Муниципальное автономное общеобразовательное учреждение лицей № 7 г. Томска

Особенности оценивания учебных достижений обучающихся с ОВЗ на уроках химии

Методическая разработка

Составитель

Ефимова Елена Георгиевна, учитель химии МАОУ лицея №7 г. Томска

Содержание

Введение	3
Условия проведения оценочных процедур	
для обучающихся с ОВЗ на уроках химии	6
Подходы к отбору содержания и разработке структуры заданий	
для оценки учебных достижений обучающихся с ОВЗ	
на уроках химии	10
Заключение	17
Список литературы	18

Введение

В настоящее время в образовательном процессе активно развивается инклюзивное образование, сущность которого заключается в совместном обучении здоровых детей и детей с ограниченными возможностями здоровья (ОВЗ).

На современном этапе развития образования наиболее остро стоит проблема поиска инновационных методов и форм обучения детей с ОВЗ, а также способов оценки их учебных достижений.

Согласно схеме процесса мышления, информация усваивается следующим образом: восприятие \rightarrow осмысление \rightarrow запоминание \rightarrow закрепление \rightarrow применение \rightarrow обобщение \rightarrow систематизация.

В самом общем смысле методологическая схема имеет следующую структуру: теория → образцы применения → отработка практических умений в порядке постепенного усложнения. Данная схема предполагает усвоение предметной составляющей. Для этого необходима система дидактических заданий, т.е. заданий разных типов, которые будут использоваться для работы с содержанием параграфов учебника [5].

Логично, если подобные задания будут использоваться при оценке учебных достижений обучающихся с OB3.

Процесс оценивания результатов деятельности обучающихся является важной составляющей всего образовательного процесса. При этом следует отметить, что термин «Assessment» - «Оценивать» - происходит от латинского глагола 'assidere' — «сидеть с». При оценивании мы сидим с учеником. Делаем это с ним и для него. Таким образом, оценивание то процесс, а не конкретный результат. Этот процесс обеспечивает всех участников образовательных отношений информацией, которая может служить обратной связью и позволяет корректировать процесс преподавания и учения.

Поскольку инклюзивное образование призвано обеспечить равные права в получении общего образования детей с OB3 с учетом их

возможностей и ограничений, его реализация на практике предполагает увязывание в единой системе интересов всех участников образовательного процесса, включая детей с ОВЗ. При этом учителя сталкиваются с целым рядом противоречий. Одно из них касается особенностей оценивания учебных достижений обучающихся с ОВЗ. С одной стороны, современные нормативные документы предъявляют требования к системе оценки учебных достижений обучающихся с ОВЗ, с другой стороны в методической литературе наблюдается явный дефицит конкретных примеров заданий, особенно по предмету химия. Отсутствуют четкие требования к таким заданиям. В связи с этим, учителя часто испытывают затруднения при составлении заданий для детей с ОВЗ, а иногда не обладают достаточными компетенциями для такого рода деятельности.

Обозначенные проблемы объясняют актуальность настоящей методической разработки.

Цель методической разработки: определение условий проведения и подходов к отбору содержания оценочных процедур для обучающихся с ОВЗ на уроках химии.

Задачи:

- 1. Изучить требования нормативных документов к условиям проведения оценочных процедур для обучающихся с OB3.
- 2. Провести анализ и сравнение содержания и структуры КИМов внешних оценочных процедур для обучающихся «нормы» и для обучающихся с ОВЗ.
- 3. Сформулировать подходы к отбору содержания и разработке структуры заданий для оценки учебных достижений обучающихся с ОВЗ на уроках химии.
- 4. Разработать примеры заданий для оценивания учебных достижений обучающихся с OB3 на уроках химии.

В настоящей методической разработке представлены особенности оценивания учебных достижений обучающихся с ОВЗ на уроках химии.

Рассматриваются условия проведения оценочных процедур и подходы к отбору содержания и разработке структуры заданий для оценки учебных достижений обучающихся с ОВЗ на уроках химии на уровне основного общего образования.

Методическая разработка адресована учителям химии, а также преподавателям других предметов и может быть использована при организации внеурочной деятельности.

Условия проведения оценочных процедур для обучающихся с **OB3** на уроках химии

Обратимся к содержанию обновлённого ФГОС ООО, а именно к п. 31.3., который предъявляет требования к системе оценки достижения планируемых результатов освоения программы основного общего образования, в том числе адаптированной. В тексте сказано, что система оценки должна:

- Отражать содержание и критерии оценки, формы представления результатов
- Обеспечивать комплексный подход к оценке результатов
- Предусматривать оценку и учет результатов использования разнообразных методов и форм обучения
- Предусматривать оценку динамики учебных достижений обучающихся
- Обеспечивать возможность получения объективной информации о качестве подготовки обучающихся
- Включать описание организации и содержания промежуточной аттестации обучающихся в рамках урочной и внеурочной деятельности

В последнем абзаце данного пункта сказано, что в системе оценки достижения планируемых результатов освоения программы основного общего образования обучающимися с ОВЗ предусматривается создание специальных условий проведения текущего контроля успеваемости и промежуточной аттестации в соответствии с учетом здоровья обучающихся с ОВЗ, их особыми образовательными потребностями.

Следует отметить, что на уровне начального общего образования для обучающихся OB3 действует Федеральный государственный образовательный стандарт начального общего образования обучающихся с ограниченными возможностями здоровья. На уровнях основного общего и среднего общего образования условия обучения детей OB3 регламентируются обновлёнными ФГОС ООО и ФГОС СОО, которые предъявляют требования к структуре, условиям реализации и результатам освоения, в том числе адаптированных образовательных программ.

Анализ требований ФГОС ООО, предъявляемых системе оценки достижения планируемых результатов, позволяет сделать вывод, что система оценки образовательных достижений обучающихся с ОВЗ подчиняется тем же требованиям, что и система оценки достижений «детей нормы», только должна предусматривать создание специальных условий.

Возникают вопросы:

- Что относится к специальным условиям?
- Какими они должны быть?

Согласно нормативным документам, существуют следующие категории обучающихся с OB3:

- с расстройствами аутистического спектра (РАС)
- с задержкой психического развития (ЗПР)
- с нарушениями слуха
- слепые
- слабовидящие
- с тяжелыми нарушениями речи (ТНР)
- с нарушениями опорно-двигательного аппарата (НОДА)

В своей работе учителя общеобразовательных школ чаще всего работают с обучающимися с ОВЗ категорий ЗПР и ТНР. Поэтому в настоящей разработке речь идет о специальных условиях проведения оценочных процедур на уроках химии для данных категорий обучающихся с ОВЗ.

В примерных адаптированных основных образовательных программах, размещённых на сайте ФгосРеестра, закреплены специальные условия проведения текущего контроля освоения АООП ООО и других оценочных процедур для обучающихся с ОВЗ.

Кратко данные требования представлены в таблице ниже.

Специальные условия проведения оценочных процедур для обучающихся в **OB3**

Специальные условия проведения текущего контроля освоения АООП ООО, промежуточной и итоговой аттестации обучающихся с ЗПР (п. 2.1.3.7.)	Специальные условия проведения текущей и промежуточной аттестации учащихся с THP (п.1.3.3.)
особая форма организации текущего контроля успеваемости и промежуточной аттестации (в малой группе, индивидуальную)	адаптирование текста задания с учетом особых образовательных потребностей (более крупный шрифт, четкое отграничение одного задания от другого и др.)
присутствие мотивационного этапа организующая помощь педагога в рационализации распределения времени, отводимого на выполнение работы	присутствие в начале работы этапа общей организации деятельности дифференцированная помощи педагога: стимулирующая (одобрение, эмоциональная поддержка), организующая (привлечение внимания, концентрирование
предоставление возможности использования справочной информации, разного рода визуальной поддержки (опорные схемы, алгоритмы учебных действий, смысловые опоры в виде	на выполнении работы, напоминание о самопроверке), направляющая (повторение и разъяснение инструкции к заданию) Оценивание письменных работ с особым учетом специфических (дисграфических) ошибок: 3 дисграфические ошибки одного типа (акустические, моторные, оптические, ошибки языкового анализа) оцениваются
ключевых слов, плана, образца) вариативность оценочных процедур, методов оценки, форм и видов диагностического инструментария и КИМов адаптация инструкций (упрощение	как 1 орфографическая. оценивание устных ответов без учета нарушений языковых/речевых норм, (произношение звуков, воспроизведение слов сложной слоговой структуры и др.) адаптация инструкций (упрощение
формулировок, построение инструкций, отражающих этапность выполнения задания) увеличение времени на выполнение заданий	формулировок, деление инструкции на короткие смысловые единицы, прочитывание инструкции педагогом вслух (при необходимости)) увеличение времени на выполнение заданий
возможность организации короткого перерыва при необходимости	возможность организации короткого перерыва при необходимости
исключение ситуаций, приводящих к эмоциональному травмированию обучающегося	учет специфики проявления речевого дефекта, его структуры и степени выраженности

Если обобщить специальные условия проведения оценочных процедур для обучающихся с ЗПР и ТНР, закреплённые в примерных АООП, можно выделить следующие условия:

• Присутствие организационно-мотивационного этапа

- Наличие алгоритмов учебных действий
- Предоставление опорных схем (смысловых опор)
- Адаптация инструкций
- Адаптация КИМов оценочных процедур (адаптация содержания и адаптация текстов)

Соблюдение вышеперечисленных условий проведения текущего контроля успеваемости и промежуточной аттестации позволяет исключить негативное влияние сторонних факторов на продуктивность выполнения обучающимся с ЗПР и ТНР тестовых заданий и выявить объективный уровень усвоения учебного материала. Наличие достаточного количества печатного материала при проведении оценочных процедур обеспечивает реализацию принципа наглядности в обучении [3].

Подходы к отбору содержания и разработке структуры заданий для оценки учебных достижений обучающихся с ОВЗ на уроках химии

Основные компоненты системы оценки достижения планируемых результатов зафиксированы в примерных АООП. К ним относятся:

- 1) Результаты промежуточной аттестации т.е. это все наши внутренние оценочные процедуры проверочные, контрольные, практические, тестирование и т.п.
- 2) Результаты ГИА. Для обучающихся с ОВЗ в форме ГВЭ.

В своей работе учителя ориентируются, том числе, на требования ГИА. Внутренняя оценка должна строиться на той же содержательной и критериальной основе, что и внешняя оценка. Форматы КИМов внутренних оценочных процедур (входной/промежуточный мониторинги, тематические контрольные работы и т.п.) для обучающихся с ОВЗ должны соответствовать форматам КИМов ГВЭ.

Для того, чтобы сформулировать основные подходы к составлению заданий для оценки учебных достижений обучающихся с ОВЗ на уроках химии, необходимо провести анализ и сравнение содержания и структуры КИМов ГИА и спецификаций к ним в форме ОГЭ и ГВЭ. Результаты анализа и сравнения приведены в таблице.

Сравнение КИМов ГИА, химия, 9 класс.

Признаки отличия	ким огэ	КИМ ГВЭ (письменная форма)
Количество заданий	24	13
Время выполнения (минут)	180	150
Тип заданий	с кратким ответом – 19	с кратким ответом – 12
	с развернутым ответом – 5	с развернутым ответом – 1
	из них эксперимент -2	
Уровень сложности	Базовый - 14	Базовый -10
	Повышенный - 5	Повышенный - 3
	Высокий - 5	
Предметное		Некоторые проверяемые
содержание		элементы содержания
		отсутствуют.

Из таблицы видно, что КИМы ОГЭ и ГВЭ отличаются количеством и типами заданий, уровнем сложности и предметным содержанием. Также отличается время, отводимое на выполнение заданий. Эти признаки отличий являются критериями для реализации подходов при составлении заданий для обучающихся с ОВЗ. Опираясь на сформулированные признаки, можно преобразовать любое задание для «детей нормы» в задание для обучающихся с ОВЗ.

Таким образом, можно сделать вывод, что адаптация КИМов (заданий) для детей с OB3 — одно из важнейших условий в построении системы оценки учебных достижений, обучающихся с OB3.

На основании вышеизложенного мы сформулировали подходы к составлению заданий.

Подходы к отбору содержания и разработке структуры заданий для обучающихся с ОВЗ:

- Значимость учебного материала для общеобразовательной подготовки обучающихся с OB3
- Простота формулировок заданий
- Наличие «подсказок»/смысловых опор в заданиях
- Уменьшение количества проверяемых элементов содержания в задании
- Построение заданий для решения в один этап (задачи)

Примеры конкретных заданий для обучающихся с OB3, с учетом перечисленных подходов, приведены ниже.

Примеры заданий для оценки учебных достижений обучающихся с **OB3** на уроках химии

1. Простота формулировок заданий.

Например, в тексте задания приведены конкретные примеры веществ или уравнений реакций. Обучающимся необходимо дописать уравнение или расставить коэффициенты и определить тип приведённой реакции.

Для обучающихся по общеобразовательной программе

Для обучающихся по адаптированной программе

Задания по теме «Галогены», 9 класс

- 1. Могут ли галогены взаимодействовать с металлами и неметаллами? Почему? Приведите примеры двух уравнений реакций.
- 2. Допишите уравнение реакции. Подберите коэффициенты методом электронного баланса. $Cl_2 + KBr \rightarrow$
- 1. Допишите уравнения реакций, расставьте коэффициенты:
- a) $H_2 + F_2 \rightarrow \dots$
- β Na + Cl₂ → ...
- 2. Для уравнения

 $Cl_2 + KBr \rightarrow KCl + Br_2$ составьте электронный баланс, укажите окислитель и восстановитель.

или

Для уравнения

 $Cl_2 + KBr \rightarrow KCl + Br_2$ подберите коэффициенты, покажите переход электронов, укажите окислитель и восстановитель.

Задания по теме «Типы химических реакций», 8 класс

Составьте уравнения реакций по описанию. Определите тип реакции:

- 1. В пробирке нагрели оксид ртути HgO, при этом получилось два простых вещества. 2. При грозовых разрядах газ кислород реагирует с газом азотом N_2 . При этом образуется оксид азота (II).
- 3. При нагревании карбоната кальция CaCO₃ образуется оксид кальция и углекислый газ.
- 4. В пробирку поместили раствор медного купороса CuSO₄ и добавили раствор гидроксида натрия NaOH. Образовался осадок. Составьте уравнение реакции, если продуктами реакции являются гидроксид меди Cu(OH)2 (осадок) и сульфат натрия Na₂SO₄.

Расставьте коэффициенты в схемах реакций.

Определите тип реакции (соединения, разложения, замещения, обмена)

- 1. HgO \longrightarrow Hg + O₂.
- 2. $N_2 + O_2 \longrightarrow NO$.
- 3. $CaCO_3 \longrightarrow CaO + CO_2$
- 4. $CuSO_4 + NaOH \longrightarrow Cu(OH)_2 + Na_2SO_4$.

2. Наличие «подсказок»/смысловых опор в заданиях.

В тексте задания даны «подсказки», опираясь на которые обучающиеся дописывают формулу или дают название вещества.

Для обучающихся по	Для обучающихся по			
общеобразовательной программе	адаптированной программе			
Проверка знаний формул кислот, 8 класс				
Допишите формулу или название кислоты:	Допишите формулу или название кислоты:			
Серная кислота	Серная кислота S Угольная кислота - H_2 O_3 Кремниевая кислота - H_2 O_3 Ортофосфорная кислота - H_3 O_4 HC1 - c я кислота HNO_3 - a 3 o τя кислота H_2SO_3 - c epя кислота			
Задания по теме «Основные классы неорганических соединении», 8 класс				
Дан текст, в котором «спрятаны» формулы веществ. Подчеркните формулы оксидов (оснований, кислот, солей) СаО $MgSiO_2CS_2Al_2O_3K_2SH_2ONaOH$ COA $l_2(SO_4)_3HSNHCINO_2Cr(OH)_3$ H $_2CO_3Na_2CO_3HNO_3MgCO_3ZnCl_2SO_2$ BaSO $_4Fe(NO_3)_2H_2SO_4AgClSO_3AlPO_4$.	Даны формулы веществ. Выписать формулы только оксидов, если известно, что общая формула оксидов $\Im_x O_y$ СаО, SiO ₂ , CS ₂ , Al ₂ O ₃ , K ₂ S, H ₂ O, NaOH, CO, Al ₂ (SO ₄) ₃ , HCI, NO ₂ , Cr(OH) ₃ , H ₂ CO ₃ , Na ₂ CO ₃ , HNO ₃ , MgCO ₃ , ZnCl ₂ , SO ₂			

3. Уменьшение количества проверяемых элементов содержания в задании.

Этот подход реализуется, например, при составлении тестовых заданий, когда обучающиеся выбирают один правильный ответ из четырех.

Для обучающихся по Для обучающихся по общеобразовательной программе адаптированной программе Тестовое задание по теме «Алюминий и его соединения», 9 класс Какие вещества из предложенного Какое ИЗ веществ вступает перечня вступают реакцию реакцию с оксидом алюминия оксидом алюминия: Al_2O_3 : 1) Cu(OH)₂ 1) Cu(OH)₂ 2) HNO₃ 2) HNO₃ 3) O₂ 3) O₂ 4) Be(OH)₂ 4) Be(OH)₂ 5) Na₂O Запишите номера выбранных ответов Тестовое задание по теме «Реакции ионного обмена», 9 класс Выберите два исходных вещества, Выпадение осадка происходит при взаимодействию взаимодействии ионов: которых соответствует уравнение ионное 1) Ca²⁺ и SO₃²⁻ реакции: $Ca^{2+} + SO_3^{2-} = CaSO_3$ 2) K⁺ и NO₃⁻ 3) Na⁺ и PO₄³⁻ 1) CaO 4) Ba²⁺ и NO₃-2) Ca 3) CaCl₂ 4) K₂SO₃ 5) H₂SO₃ 6) SO₂ Запишите номера выбранных ответов

4. Построение заданий для решения в один этап (задачи)

Этот подход реализуется при составлении текстов расчетных задач, когда обучающиеся осуществляют решение задачи в одно действие (или минимум действий).

Для обучающихся по общеобразовательной программе

Для обучающихся по адаптированной программе

Формулировки расчетных задач (расчет по химическому уравнению), 8 класс

К 340 г раствора нитрата серебра прилили избыток раствора хлорида калия. При этом выпал осадок массой 28,7 г. Вычислите массовую долю нитрата серебра в растворе.

К 340 г раствора нитрата серебра с массовой долей соли 10% прилили избыток раствора хлорида калия. Вычислите массу выпавшего осадка.

(можно привести уравнение реакции)

Формулировки расчетных задач (расчет по формуле), 8 класс

Из 300 г. раствора с массовой долей соли 10% выпарили часть воды. При этом в осадок выпало 4 г. соли, а массовая доля соли в полученном растворе составила 13%. Вычислите массу выпаренной воды.

Из 300 г. раствора с массовой долей соли 10% выпарили 50 г. воды. Вычислите массовую долю соли в полученном растворе.

При решении задач иногда важно предложить готовую краткую запись, на которой объясняется способ решения. Обучающихся записывает только решение задачи, что экономит его время и дает возможность вместе со всем классом в одно и то же время закончить запись решения задачи. В дальнейшем помощь корректируется в зависимости от образовательных потребностей обучающегося. Например, обучающийся сам составляет краткую запись, ориентируясь на выделенные учителем для него ключевые слова в тексте задачи. Не следует на постоянной основе помогать ребенку с ОВЗ. В некоторых ситуациях необходимо дать возможность самостоятельно принять решение, поощрить его за это, тем самым создавая ситуацию успеха [2].

При составлении текстов диагностических работ также следует учитывать уровень сформированности мыслительных операций у обучающихся, имеющих задержку психического развития. Важно включать

задания, в основном, репродуктивного характера, задания, имеющие практическую направленность. Наиболее оптимальными для ребенка с ОВЗ считаются задания, которые необходимо выполнить по образцу. К таким упражнениям относятся заполнение схем, работа с рисунками и таблицами [4].

При проведении оценочных процедур необходимо тщательно продумывать задания для обучающихся с ОВЗ, чтобы ученики смогли с ними справиться и чувствовали себя комфортно [1].

Заключение

На основе самоанализа результатов собственной деятельности мы можем говорить, что создание специальных условий проведения текущего контроля успеваемости и промежуточной аттестации в соответствии с учетом обучающихся OB3, ИХ особыми образовательными здоровья потребностями, повысить позволяет продуктивность выполнения обучающимся заданий и выявить объективный уровень усвоения учебного материала. При этом обучающиеся показывают более высокий уровень качественной и абсолютной успеваемости.

Данные результаты достигаются при условии регулярного (на каждом уроке) применения подходов к составлению заданий и созданию условий проведения оценочных процедур на уроках химии.

Описанные в подходы являются универсальными и могут быть использованы преподавателями любых предметов, а также во внеурочной деятельности. Кроме того, универсальность подходов позволяет использовать их не только на уровне основного общего образования, но и на уровнях начального и среднего общего образования.

Список литературы

- 1. Кучмаева, О.В. Проблемы развития инклюзивного образования / О.В. Кучмаева, Г.В. Сабитова, О.Л. Петрякова // Воспитания школьников. 2017. N_{2} 4.
- 2. Назарова Н.М. Интегрированное (инклюзивное) образование: генезис и проблемы внедрения» // Научно-методический журнал «Коррекционная педагогика». 2016. № 4.
- 3. Селевко Г.К. Технологии воспитания и обучения детей с проблемами. М.: НИИ школьных технологий, 2017. – 144 с.
- 4. Староверова, М.С. Инклюзивное образование: Настольная книга педагога, работающего с детьми с ОВЗ: методическое пособие / М.С. Староверова, Е.В. Ковалев. М.: Изд. центр «ВЛАДОС», 2017. 317 с.
- 5. Сунцова А.С. Теории и технологии инклюзивного образования: учебное пособие. Ижевск: Изд-во «Удмуртский университет», 2018. 110 с.